Forschung Panorama
Die Verteilung und Anordnung der Kohlenstoffatome in martensitischem Stahl spielen eine wichtige Rolle für die Leistungsfähigkeit des Stahls - Bild: Xie Zhang, Max-Planck-Institut für Eisenforschung GmbH
12.06.2020

Forschung: Was im Stahl für Ordnung sorgt

komplexes energetisches Wechselspiel der Kohlenstoffatome in Metallen

Kohlenstoffatome spielen für die Festigkeit von Stahl eine wichtige Rolle. Doch auch in Stählen, die schon seit Jahrzehnten im Einsatz sind, war das kollektive Verhalten dieser Atome bisher nicht vollständig verstanden. Eine gemeinsame Arbeit an der Ruhr-Universität Bochum (RUB) und dem Max-Planck-Institut für Eisenforschung hat Licht ins Dunkel gebracht: Das Wechselspiel zwischen den Kohlenstoffatomen, den durch sie verursachten Verzerrungen des Kristallgitters und den Gitterbaufehlern im Stahl ist für die energetischen Vorlieben der einzelnen Kohlenstoffatome entscheidend. Mit diesem Verständnis lässt sich die Herstellung von hochfesten Werkstoffen genauer steuern. Darüber berichtet die Zeitschrift Nature Materials am 4. Mai 2020.

Wenn die Kohlenstoffkonzentration kippt

Die wichtigsten Bestandteile von Stahl sind die Elemente Eisen und Kohlenstoff. Entscheidend für die Festigkeit dieses Materials ist aber nicht in erster Linie das Mischungsverhältnis, sondern die Verteilung der Kohlenstoffatome. Nehmen sie nach der Stahlherstellung eine bestimmte Ordnung ein, sprechen die Experten von Martensit. Die Details der Bildung dieser Struktur gaben der Forschung allerdings Jahrzehntelang Rätsel auf: Bis zu einer bestimmten Konzentration von Kohlenstoff sammeln sich die Kohlenstoffatome aus energetischen Gründen an Grenzflächen und Defekten im Gitter der Eisenatome an. Steigt die Kohlenstoffkonzentration über einen bestimmten Wert, findet sich der Überschuss der Kohlenstoffatome nicht mehr an solchen Defekten, obwohl dort eigentlich noch genug Platz wäre. Vielmehr verteilen sich die C-Atome ab dieser Konzentration auf eine bestimmte, geordnete Weise im Kristallgitter. „Dabei ist der Abstand der Kohlenstoffatome im Gitter eigentlich viel zu groß, um eine solche Ordnung chemisch zu begründen“, so Dr. Jutta Rogal vom Interdisciplinary Centre for Advanced Materials Simulation Icams der RUB.

Warum das so ist, hat das interdisziplinäre Team durch eine Kombination von theoretischen Berechnungen und Experimenten herausgefunden. Zwei Aspekte sind dafür von Bedeutung: Für das Kippen zwischen der Ansammlung von Kohlenstoffatomen an Defekten hin zu einem geordneten Aufsuchen bestimmter Plätze im Metallgitter sorgen stark anharmonische Verzerrungen der Gittermatrix in bestimmte kristallographische Richtungen. „Ist die Kohlenstoffkonzentration zu gering für starke Verzerrungen, ist es energetisch am wenigsten aufwändig, Grenzen oder Defekte zu besetzen“, erklärt Dr. Tilmann Hickel vom Max-Planck-Institut für Eisenforschung (MPIE). „Ab einer gewissen Konzentration stellt sich aber ein kollektiver Effekt der Atome ein, weil dieser Zustand mit einer Absenkung des chemischen Potenzials einhergeht – was den Gesetzen der Thermodynamik nach einer Energieminimierung entspricht.“

Gesamtsystem und einzelne Teile

Will man also die Prozesse der Werkstoffherstellung steuern, muss man diese Grundlagen in ihren komplexen Zusammenhängen kennen. „Wir müssen die Energie des gesamten Systems als Funktion von Druck und Temperatur im Auge haben, aber gleichzeitig auch die Energetik des einzelnen Teilchens in diesem System“, fasst Prof. Dr. Jörg Neugebauer vom MPIE zusammen. Nur so ist es dem Forschungsteam gelungen, die theoretischen Vorhersagen mit in Experimenten gemessenen Daten in Einklang zu bringen. Für die Messungen an verschiedenen Werkstoffen kamen die Atomsondentomografie und die Transmissionselektronenmikroskopie zum Einsatz.

Max-Planck-Institut für Eisenforschung

Literatur: Zhang X., Wang H., Hickel T., Rogal J., Li Y., Neugebauer J.: Nature Materials, 2020, DOI: 10.1038/s41563-020-0677-9

Schlagworte

Forschung

Verwandte Artikel

Leiterplatte aus einem Elektroschrott-Teil in der wässrigen Lauge
03.10.2020

Kleine Helfer für die Metallgewinnung

Biohydrometallurgen der TU Bergakademie Freiberg haben erstmals nachgewiesen, dass die Laugung mit Hilfe von Bakterien auch beim Recycling von Elektroschrott zur Trennung...

Biohydrometallurgen Elektroschrott Energie Entwicklung EU Forschung Handel Metallurgie Recycling Rohstoffe Schrott TU Bergakademie Freiberg USA
Mehr erfahren
Das Kopernikus-Projekt P2X gibt einen umfassenden Überblick über die deutsche Power-to-X-Landschaft
08.06.2020

Zukunftstechnologie: Interaktive Datenbank zeigt Power-to-X-Projekte

Mehr als 60 Forschungsprojekte und über 30 Industrieanlagen – die Forschung an Power-to-XTechnologien in Deutschland läuft auf Hochtouren. Auch in der geplanten Nationale...

Energie Forschung Klimaschutz
Mehr erfahren
Forschende des UDE-Instituts für Technologien der Metalle haben mathematische Prozessmodelle von Walzwerken optimiert
05.06.2020

Forschungsprojekt der UDE-Umformtechnik: Optimal Walzen

Wer Stabstahl und Draht walzt, muss den Werkstoff auf über 1.000 °C erhitzen, erst dann lässt er sich in die gewünschte Form bringen. Forschende des UDE-Instituts für Tec...

Forschung Walztechnik
Mehr erfahren
Die Reduktionsanlage in Hamburg ebnet den Weg in eine wasserstoffbasierte Zukunft
18.05.2020

ArcelorMittal: Forschungsprojekt mit HAW Hamburg geplant

Bei ArcelorMittal bedeutet der Blick in die Zukunft, sich mit Innovationen auseinanderzusetzen, Investitionen zu planen, Betriebskosten abzuschätzen – und das alles mit d...

CO2 Forschung Wasserstoff
Mehr erfahren
Einsatz finden selbstlernende Transportsysteme beispielsweise in Logistik- und Produktionsumgebungen
13.05.2020

Ostfalia: Entwicklung eines selbstlernenden Transportsystems

An der Ostfalia Hochschule für angewandte Wissenschaften beschäftigt sich ein Projektteam mit der Entwicklung eines selbstlernenden Transportsystems (SeLeTraSys). Hochaut...

Forschung Logistik
Mehr erfahren