Forschung
Photo: pixabay
05.07.2021

Forscher arbeiten an Eisengewinnung im Wasserstoffplasma

3,5 Milliarden Tonnen Kohlendioxid jährlich einsparen

Deutschland, Europa und fast alle Länder der Welt streben eine klimaneutrale Wirtschaft an. Das bedeutet, so viel CO2-Emissionen wie möglich einzusparen und die verbleibenden Emissionen zu kompensieren. Doch dieses Ziel wird mit der heutigen Technik kaum erreicht. Einer der größten industriellen CO2-Emittenten, die Eisen- und
Stahlindustrie, hat bisher noch keine Möglichkeit in großem Stil grünen Stahl zu produzieren und ist bis heute für etwa 7% aller CO2-Emissionen weltweit verantwortlich.

Angesichts dieser Herausforderungen erforscht ein Team des Max- Planck-Instituts für Eisenforschung (MPIE) die Möglichkeit, Wasserstoffplasma für die Reduktion von Eisenerz anstelle von Koks oder reformiertem Erdgas einzusetzen. Ihre neuesten Ergebnisse veröffentlichten die Wissenschaftlerinnen und Wissenschaftler in der Fachzeitschrift Acta Materialia.

„Die Verwendung von reinem Wasserstoff anstelle von Koks oder reformiertem Erdgas zur Reduktion von Eisenerz kann ein Weg sein, um CO2-Emissionen einzusparen. Allerdings erfordert die chemische Reaktion mit reinem Wasserstoff eine externe Energiezufuhr. Die Verwendung von Wasserstoffplasma dahingegen erlaubt die Reduktion mit weniger Energie durchzuführen. Während der Reduktion von Eisenerz im Lichtbogenofen, kollidieren H2-Moleküle aufeinander und mit Elektronen, was zur Bildung von hochener-getischem Wasserstoff führt. Dieser gibt seine Energie teilweise an der Reaktionsgrenzfläche zwischen Oxid und Plasmalichtbogen ab. Diese freigesetzte Energie wiederum wird für die Reduktionsreaktion benötigt. Der ganze Prozess ist also exotherm, da er keine externe Energiezufuhr braucht. Deshalb ist der Einsatz von Wasserstoffplasma anstelle von reinem Wasserstoff hier vorteilhaft.“, erklärt Dr. Isnaldi Souza, Postdoktorand am MPIE und Erstautor der Publikation.

Der Einsatz von Wasserstoffplasma hat noch einen weiteren Vorteil: Eisenerz kann in einem einzigen Schritt gleichzeitig geschmolzen und reduziert werden, ohne nachträgliche Agglomerations- oder Raffinationsprozesse.

„Wir haben die Nano- Chemie, die Grenzflächenstruktur und -zusammensetzung sowie die Kinetik der Phasenumwandlung untersucht. Unsere Ergebnisse zeigen, dass der Einsatz von Wasserstoffplasma in den etablierten industriellen Elektroöfen ohne größere Modifikationen stattfinden könnte. Dennoch untersuchen wir weiter mögliche Auswirkungen des Wasserstoffplasmas auf die Elektroden- und Ofenmaterialien", sagt Dr. Yan Ma, Postdoc im gleichen Team mit Souza und Mitautor der Veröffentlichung.

Die neuesten MPIE-Untersuchungen zeigen die Thermodynamik und Kinetik der Wasserstoff-Plasma-Reduktion von Eisenerzen und bieten damit einen alternativen Weg für die Herstellung von grünem Stahl. Generell wurden am MPIE mehrere Gruppen eingerichtet, die sich mit den verschiedenen Aspekten nachhaltiger Metalle beschäftigen. Souza und Ma arbeiten beide in der abteilungsübergreifenden Gruppe „Physical Metallurgy of Sustainable Alloys“. Verwandte Gruppen sind „Hydrogen in Materials“, „Hydrogen Mechanics and Interfaces“, „Computational Sustainable Metallurgy“ und in Kooperation mit der RWTH Aachen die Gruppe „Sustainable Materials Science and Technology“.

(Quelle: Max-Planck-Institut für Eisenforschung GmbH)

 

Reduktion von Eisenerz mit Wasserstoffplasma: (1) Hämatit wird in den Lichtbogenschmelzofen gegeben, in dem der Prozess durchgeführt wird. Der Ofen ist mit einer Wolframelektrode ausgestattet und mit einem Gasgemisch aus Ar-10% H2 gefüllt. (2) Bild des Reduktionsprozesses, bei dem Wasserstoffplasma zwischen der Spitze der Elektrode und dem Eingangsmaterial gezündet wird. Das Erz wird gleichzeitig geschmolzen und reduziert. (3) Foto einer teilweise reduzierten Probe nach 5 Minuten Einwirkzeit des Plasmas. Eisen ist im unteren Teil der Probe zu sehen (hellgraue Bereiche). Der obere Teil (dunkelgrau) der Probe besteht aus verbleibendem, nicht reduziertem Eisenoxid (hauptsächlich Wüstit, FexO). (4) Mikrostrukturelle Charakterisierung der Probe, durchgeführt mittels Elektronenrückstreubeugung (EBSD). Die EBSD-Karte zeigt die räumliche Phasenverteilung, die aus dem durch den gelben Rahmen in (4) hervorgehobenen Bereich gewonnen wurde. In dieser Karte sind verbleibender Wüstit und Eisen in grün bzw. rot dargestellt. (5) Nanochemische Analyse mittels Atomsonden-Tomographie (APT) an der Phasengrenzfläche zwischen Wüstit und Eisen. Fe- und O-Atome sind in rosa bzw. blau dargestellt. - © Isnaldi Souza, Max-Planck-Institut für Eisenforschung GmbH
© Isnaldi Souza, Max-Planck-Institut für Eisenforschung GmbH

Schlagworte

grüner StahlMPIeWasserstoff

Verwandte Artikel

(v.l.n.r.) Sandrina Sieverdingbeck, Geschäftsführerin DEUMU (Deutsche Erz- und Metall-Union GmbH); Holger Kreetz, Uniper SE COO; Gunnar Groebler, Salzgitter AG CEO; Christian Stuckmann, Uniper SE VP Business Development Hydrogen
23.04.2024

Salzgitter AG und Uniper kooperieren bei grünem Wasserstoff

Die Salzgitter AG und die Uniper SE haben einen Vorvertrag über die Lieferung und Abnahme von grünem Wasserstoff unterzeichnet. Dieser soll in der von Uniper geplanten Gr...

CO2 Dekarbonisierung Deutschland Direktreduktion Elektrolyse Emissionen Energie Erdgas EU Hochofen Inbetriebnahme Industrie ING KI Klima Klimaziel Klimaziele Kooperation Lieferung Offshore Partnerschaft Produktion Produktionsprozess Reduktionsmittel Stahl Stahlindustrie Stahlproduktion Strategie Transformation Uniper Unternehmen Vereinbarung Wasserstoff Wilhelmshaven Windpark
Mehr erfahren
Auditorium
22.04.2024

INNOVATIONSTAG 2024

Die Forschungsvereinigung Schweißen und verwandte Verfahren e. V. des DVS und die FOSTA - Forschungsvereinigung Stahlanwendung e. V. haben am 10. und 11. April den Innova...

Additive Fertigung Düsseldorf DVS – Deutscher Verband für Schweißen und verwandte Verfahren e. V.) Energie Energiewende Ergebnis EU EWM Forschung Forschungsprojekt Fosta Industrie ING Kooperation Leuchten Nachhaltigkeit Produktion RWTH RWTH Aachen Schweißen Stahl Stahl-Zentrum Stahlanwendung Studie Technik Veranstaltung Wasserstoff Wasserstofftechnologie Wirtschaft
Mehr erfahren
22.04.2024

GMH begrüßt Einführung des Low Emission Steel Standard

Die einheitliche Klassifizierung der Klimawirkung des in verschiedenen Verfahren produzierten Stahls in Deutschland ist ein wichtiger Schritt auf dem Weg zu grünen Leitmä...

BMW Bund CO2 CO2-Emissionen Dekarbonisierung Deutschland Emissionen EU Gesellschaft Hochofen Industrie ING KI Klima Klimaschutz Klimaziel Klimaziele Messe Messung Politik Produktion Schrott Stahl Stahlherstellung Stahlproduktion Strategie Transformation Transformationsprozess Unternehmen USA Wasserstoff Wasserstoffbasiert Wirtschaft Zusammenarbeit
Mehr erfahren
Vertreter der Stahlbranche und Politik bei der Einführung von LESS
22.04.2024

WV Stahl und BMWK führen Low Emission Steel Standards ein

Die Wirtschaftsvereinigung Stahl und das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) haben mit der Einführung des Low Emission Steel Standards (LESS) einen Gr...

BMW Bund CO2 Dekarbonisierung Deutschland Energie Entwicklung Ergebnis EU Finanzierung Hochofen Industrie ING Investition KI Klima Klimaschutz Klimaziel Klimaziele Ministerium für Wirtschaft Politik Produktion Schrott Stahl Stahlindustrie Stahlproduktion Transformation Unternehmen USA Wasserstoff Wasserstoffbasiert Wirtschaft Zusammenarbeit
Mehr erfahren
19.04.2024

PPA-Markt in Deutschland: Vervierfachung des Marktvolumens

Die Deutsche Energie-Agentur (dena) stellt ihre „PPA-Marktanalyse Deutschland 2023“ vor. Die Marktanalyse betont die wachsende Bedeutung von PPAs für nachhaltige Geschäft...

Dekarbonisierung Deutschland Elektrolyse Elektrolyseur Energie Energiewende Entwicklung EU Getriebe Handel IHK Industrie ING Klima Klimaschutz Offshore Politik Produktion Spanien Umwelt Unternehmen Wasserstoff Wasserstoffbasiert Wettbewerb Wirtschaft Zahlen
Mehr erfahren