Forschung
Photo: pixabay
05.07.2021

Forscher arbeiten an Eisengewinnung im Wasserstoffplasma

3,5 Milliarden Tonnen Kohlendioxid jährlich einsparen

Deutschland, Europa und fast alle Länder der Welt streben eine klimaneutrale Wirtschaft an. Das bedeutet, so viel CO2-Emissionen wie möglich einzusparen und die verbleibenden Emissionen zu kompensieren. Doch dieses Ziel wird mit der heutigen Technik kaum erreicht. Einer der größten industriellen CO2-Emittenten, die Eisen- und
Stahlindustrie, hat bisher noch keine Möglichkeit in großem Stil grünen Stahl zu produzieren und ist bis heute für etwa 7% aller CO2-Emissionen weltweit verantwortlich.

Angesichts dieser Herausforderungen erforscht ein Team des Max- Planck-Instituts für Eisenforschung (MPIE) die Möglichkeit, Wasserstoffplasma für die Reduktion von Eisenerz anstelle von Koks oder reformiertem Erdgas einzusetzen. Ihre neuesten Ergebnisse veröffentlichten die Wissenschaftlerinnen und Wissenschaftler in der Fachzeitschrift Acta Materialia.

„Die Verwendung von reinem Wasserstoff anstelle von Koks oder reformiertem Erdgas zur Reduktion von Eisenerz kann ein Weg sein, um CO2-Emissionen einzusparen. Allerdings erfordert die chemische Reaktion mit reinem Wasserstoff eine externe Energiezufuhr. Die Verwendung von Wasserstoffplasma dahingegen erlaubt die Reduktion mit weniger Energie durchzuführen. Während der Reduktion von Eisenerz im Lichtbogenofen, kollidieren H2-Moleküle aufeinander und mit Elektronen, was zur Bildung von hochener-getischem Wasserstoff führt. Dieser gibt seine Energie teilweise an der Reaktionsgrenzfläche zwischen Oxid und Plasmalichtbogen ab. Diese freigesetzte Energie wiederum wird für die Reduktionsreaktion benötigt. Der ganze Prozess ist also exotherm, da er keine externe Energiezufuhr braucht. Deshalb ist der Einsatz von Wasserstoffplasma anstelle von reinem Wasserstoff hier vorteilhaft.“, erklärt Dr. Isnaldi Souza, Postdoktorand am MPIE und Erstautor der Publikation.

Der Einsatz von Wasserstoffplasma hat noch einen weiteren Vorteil: Eisenerz kann in einem einzigen Schritt gleichzeitig geschmolzen und reduziert werden, ohne nachträgliche Agglomerations- oder Raffinationsprozesse.

„Wir haben die Nano- Chemie, die Grenzflächenstruktur und -zusammensetzung sowie die Kinetik der Phasenumwandlung untersucht. Unsere Ergebnisse zeigen, dass der Einsatz von Wasserstoffplasma in den etablierten industriellen Elektroöfen ohne größere Modifikationen stattfinden könnte. Dennoch untersuchen wir weiter mögliche Auswirkungen des Wasserstoffplasmas auf die Elektroden- und Ofenmaterialien", sagt Dr. Yan Ma, Postdoc im gleichen Team mit Souza und Mitautor der Veröffentlichung.

Die neuesten MPIE-Untersuchungen zeigen die Thermodynamik und Kinetik der Wasserstoff-Plasma-Reduktion von Eisenerzen und bieten damit einen alternativen Weg für die Herstellung von grünem Stahl. Generell wurden am MPIE mehrere Gruppen eingerichtet, die sich mit den verschiedenen Aspekten nachhaltiger Metalle beschäftigen. Souza und Ma arbeiten beide in der abteilungsübergreifenden Gruppe „Physical Metallurgy of Sustainable Alloys“. Verwandte Gruppen sind „Hydrogen in Materials“, „Hydrogen Mechanics and Interfaces“, „Computational Sustainable Metallurgy“ und in Kooperation mit der RWTH Aachen die Gruppe „Sustainable Materials Science and Technology“.

(Quelle: Max-Planck-Institut für Eisenforschung GmbH)

 

Reduktion von Eisenerz mit Wasserstoffplasma: (1) Hämatit wird in den Lichtbogenschmelzofen gegeben, in dem der Prozess durchgeführt wird. Der Ofen ist mit einer Wolframelektrode ausgestattet und mit einem Gasgemisch aus Ar-10% H2 gefüllt. (2) Bild des Reduktionsprozesses, bei dem Wasserstoffplasma zwischen der Spitze der Elektrode und dem Eingangsmaterial gezündet wird. Das Erz wird gleichzeitig geschmolzen und reduziert. (3) Foto einer teilweise reduzierten Probe nach 5 Minuten Einwirkzeit des Plasmas. Eisen ist im unteren Teil der Probe zu sehen (hellgraue Bereiche). Der obere Teil (dunkelgrau) der Probe besteht aus verbleibendem, nicht reduziertem Eisenoxid (hauptsächlich Wüstit, FexO). (4) Mikrostrukturelle Charakterisierung der Probe, durchgeführt mittels Elektronenrückstreubeugung (EBSD). Die EBSD-Karte zeigt die räumliche Phasenverteilung, die aus dem durch den gelben Rahmen in (4) hervorgehobenen Bereich gewonnen wurde. In dieser Karte sind verbleibender Wüstit und Eisen in grün bzw. rot dargestellt. (5) Nanochemische Analyse mittels Atomsonden-Tomographie (APT) an der Phasengrenzfläche zwischen Wüstit und Eisen. Fe- und O-Atome sind in rosa bzw. blau dargestellt. - © Isnaldi Souza, Max-Planck-Institut für Eisenforschung GmbH
© Isnaldi Souza, Max-Planck-Institut für Eisenforschung GmbH

Schlagworte

grüner StahlMPIeWasserstoff

Verwandte Artikel

22.09.2021

voestalpine erhöht im laufenden Geschäftsjahr ihr Forschungsbudget auf 185 Mio. Euro

Der Schwerpunkt der Forschungstätigkeit liegt dabei mehr und mehr auf digitalen und zugleich ressourcenschonenden Produkten und Prozessen.

Automobil CO2 CO2-Emissionen Dekarbonisierung Donawitz DSV Emissionen Entwicklung Essen EU Forschung Geschäftsjahr Gesellschaft Industrie ING Innovation Investition Klima Kran Leichtbau Messe Nachhaltigkeit Patent Produktentwicklung Produktion Schienen Sensoren Sensorik Stahl Stahlerzeugung Stahlproduktion Technik Unternehmen Voestalpine AG Wasserstoff Werkstoff Werkstoff Stahl Wettbewerb Wirtschaft
Mehr erfahren
20.09.2021

LSV ist offizielles Mitglied im Wasserstoffbündnis Bayern

Im Zuge der aktuellen CO2-Diskussion spielt Wasserstoff in der Stahlindustrie eine wichtige Rolle im Hinblick auf die Herstellung von sogenannten grünen Stahl.

CO2 Forschung Industrie LSV Lech-Stahl Veredelung GmbH Stahl Stahlindustrie Stahlwerk Unternehmen Wasserstoff Wasserstofftechnologie Wirtschaft
Mehr erfahren
Von links: Burkhard Dahmen, CEO von SMS group und Pavel Shilyaev, CEO von MMK
20.09.2021

MMK und SMS group kooperieren im Bereich Dekarbonisierung

Magnitogorsk Iron and Steel Works (MMK), Russland, und die SMS group haben heute eine Absichts­erklärung (MoU) über eine Zusammenarbeit im Bereich Dekarbonisierung der St...

CO2 CO2-Emissionen Dekarbonisierung Direktreduktion Elektrolyse Emissionen Entwicklung EU Industrie Klima Klimaschutz Kooperation Magnitogorsk Iron and Steel Works Metallurgie MMK Russland SMS SMS group Stahl Stahlherstellung Stahlindustrie Studie Umwelt Umweltschutz Unternehmen USA Wasserstoff Wirtschaft Zusammenarbeit
Mehr erfahren
17.09.2021

Tata Steel entscheidet sich für Wasserstoffroute in IJmuiden

Tata Steel hat am 15. September 2021 bekannt gegeben, in IJmuiden auf eine Wasserstoffroute zu setzen.

CO2 CO2-Emissionen Direktreduktion Emissionen Erdgas IJmuiden Klimastrategie ORCA van Loon Communications GmbH Stahl Studie Tata Steel Unternehmen Wasserstoff
Mehr erfahren
Staatsbesuch in Schweden – Ankunft auf dem Flughafen in Stockholm und Empfang durch Mitglieder der schwedischen Königsfamilie
08.09.2021

Besuch bei Eisenerzproduzent LKAB

Bundespräsident Frank-Walter Steinmeier reist vom 7. bis 9. September 2021 zu einem Staatsbesuch in das Königreich Schweden. Gunnar Groebler, Vorstandsvorsitzender der Sa...

Anlagen CO2 CO2-Emissionen Dekarbonisierung Deutschland Direktreduktion Eisenerze Elektrolyse Elektrolyseur Emissionen EU Industrie LKAB Produktion Salzgitter Salzgitter AG Schweden Stahl Stahlherstellung Stahlproduktion Wasserstoff Wasserstoffbasiert Wirtschaft Zukunftstechnologie
Mehr erfahren