Forschung
Photo: pixabay
02.07.2021

Künstliche Intelligenz analysiert komplexe Materialien

Max-Planck-Forscher präsentieren neues tiefenneuronales Netz zur Vorhersage des mechanischen Verhaltens von Materialien

Die Vorhersage des mechanischen Verhaltens aller Systeme, die uns umgeben, von Fahrzeugen und Raumschiffen bis hin zu Brücken und Wolkenkratzern, ist für Sicherheit und Design unerlässlich. Seit mehr als 300 Jahren wissen Wissenschaftler*innen, wie man die zugrundeliegende Physik in mathematische Formeln übersetzt. Dank des technologischen Fortschritts wurde eine riesige Sammlung von numerischen Werkzeugen und Methoden entwickelt, um die komplexen Gleichungen computergestützt zu lösen und korrekte Antworten zu verschiedenen mechanischen Problemen vorherzusagen. Das direkte Lösen dieser Gleichungen braucht aber Zeit und wird umso schwieriger, je komplexer das System ist. Deswegen sehen sich Forscher oft dazu gezwungen, Näherungen zu verwenden, anstatt alle Variablen des Systems zu berücksichtigen. Jetzt wurde ein großer Schritt in Richtung genauer und schneller Vorhersagen der Mechanik komplexer Materialien gemacht. Wissenschaftler des Max-Planck-Instituts für Eisenforschung (MPIE) und DeepMetis, einem auf künstliche Intelligenz spezialisierten Unternehmen in Berlin, haben tiefe neuronale Netze eingesetzt, um lokale Spannungen in komplexen Materialien zu berechnen - und das bis zu 8300 Mal schneller als ein Standard-Rechensystem, sogenannte Solver, es tun würde. Ihre neuesten Ergebnisse veröffentlichten sie in der Zeitschrift „npj Computational Materials“.

„Unsere Arbeit zeigt, wie all diese Berechnungen durch maschinelles Lernen ersetzt werden können. Anstatt die Gleichungen direkt zu lösen, haben wir ein neuronales Netzwerk entwickelt, das die Physik erlernen und korrekte Antworten auf komplexe und nichtlineare Fragen der Mechanik vorhersagen kann, indem es sich einfach einen großen Datensatz ansieht.“, erklärt Dr. Jaber Rezaei Mianroodi, Leiter der MPIE-Gruppe „Computational Sustainable Metallurgy“ und Erstautor der Veröffentlichung.

Nachdem das neuronale Netz mit vorberechneten korrekten physikalischen Reaktionen trainiert wurde, ist es in der Lage, Lösungen für Probleme und Konfigurationen vorherzusagen, denen es während des Trainings nie begegnet ist. Ähnlich wie ein erfahrener Ingenieur, der ein Gespür für komplexe mechanische Probleme entwickelt und in der Lage ist, innerhalb von Sekunden fundierte Vermutungen anzustellen, lernt das Netzwerk die zugrunde liegende Physik und sagt Lösungen in Mikrosekunden vorher. Die Vorhersagen des Netzwerks sind trotz der Komplexität des Systems um Größenordnungen schneller als herkömmliche Solver. Im Gegensatz zu konventionellen Solvern, die einen iterativen (Versuch und Irrtum) Ansatz zur Lösung nichtlinearer Probleme erfordern, ist der trainierte maschinelle Solver nicht iterativ.

„Diese Methode kann die herkömmlichen Solver ersetzen und verbessert unser Verständnis von Multiskalen- und Multiphysik-Problemen. Unser Solver verbraucht um Größenordnungen weniger Rechenzeit, was neue Möglichkeiten für innovative Materialmodelle eröffnet. Die Einbeziehung unserer maschinellen Lerntechnik wird uns dabei helfen, die Modelle aussagekräftiger und realistischer zu machen, da sie die Optimierung noch komplizierterer Systeme ermöglicht.“, sagt Dr. Nima Siboni, Experte für künstliche Intelligenz bei DeepMetis und Alumni des MPIE.

Die Forscher werden nun die Flexibilität und den Umfang des maschinellen Lernansatzes erweitern, um noch genauere Vorhersagen zu treffen. Außerdem planen sie, weitere wichtige Gleichungen zu untersuchen, die mit herkömmlichen Methoden nur zeitaufwändig zu lösen wären.

Originalpublikation:
J. R. Mianroodi, N. H. Siboni, D. Raabe: Teaching solid mechanics to artificial intelligence – a fast solver for heterogeneous materials. In: npj Compu Mats, 10.1038/s41524-021-00571-z.

Autoren: J. R. Mianroodi, Y. Ahmed Salem

 

Anhand vieler vorberechneter korrekter Antworten lernt das neuronale Netz die versteckten Beziehungen zwischen den eingegebenen Daten und den Ergebnissen der Simulationen. Einmal trainiert, kann das neuronale Netz korrekte Lösungen in unbekannten Simulationskonfigurationen vorhersagen, und das in einem Bruchteil der Zeit, die für herkömmliche Berechnungen benötigt wird. Das ist genau das, was der neue Solver des MPIE macht. - Copyright: J. R. Mianroodi, Max-Planck-Institut für Eisenforschung GmbH
Copyright: J. R. Mianroodi, Max-Planck-Institut für Eisenforschung GmbH

Schlagworte

EisenforschungForschungKünstliche IntelligenzMax-Planck-InstitutMPIeTechnik

Verwandte Artikel

Kurt Satzinger
25.04.2024

Neuer Forschungschef der voestalpine

Kurt Satzinger folgt auf den langjährigen voestalpine-Forschungsleiter Franz Androsch, der sich in den Ruhestand verabschiedet.

Automobil Bund Energie Entwicklung Essen EU Forschung Gesellschaft ING Innovation Karriere Unternehmen USA Voestalpine Voestalpine AG Werkstoff Wirtschaft
Mehr erfahren
Salzgitter Flachstahl hat in eine Modernisierung der Automatisierung von Primetals Technologies für einen Teil der Warmwalzlinie investiert.
24.04.2024

Brammenstauchpresse bei Salzgitter Flachstahl modernisiert

Die Salzgitter Flachstahl hat Primetals Technologies mit einer Modernisierung der Leistungselektronik für die Brammenstauchpresse im Warmwalzwerk Salzgitter beauftragt.

Antrieb Automatisierung Blech Bramme Direktumrichter Essen EU Flachstahl Gesellschaft Inbetriebnahme Konverter Optimierung Presse Pressen Primetals Produktion Salzgitter Salzgitter Flachstahl Schmelze Schmelzen Stahl Technik Umrichter Unternehmen USA Walzwerk Warmband
Mehr erfahren
Auditorium
22.04.2024

INNOVATIONSTAG 2024

Die Forschungsvereinigung Schweißen und verwandte Verfahren e. V. des DVS und die FOSTA - Forschungsvereinigung Stahlanwendung e. V. haben am 10. und 11. April den Innova...

Additive Fertigung Düsseldorf DVS – Deutscher Verband für Schweißen und verwandte Verfahren e. V.) Energie Energiewende Ergebnis EU EWM Forschung Forschungsprojekt Fosta Industrie ING Kooperation Leuchten Nachhaltigkeit Produktion RWTH RWTH Aachen Schweißen Stahl Stahl-Zentrum Stahlanwendung Studie Technik Veranstaltung Wasserstoff Wasserstofftechnologie Wirtschaft
Mehr erfahren
Sonderprofile
18.04.2024

135 Jahre Böllinghaus Steel

Böllinghaus Steel, ein traditionsreiches Familienunternehmen mit nunmehr schon 135 Jahren Erfahrung in der Stahlbranche.

Böllinghaus Bund CO2 Deutschland Edelstahl Edelstahlprofile Einsparung Energie EU Flachstahl Hilden Industrie ING Innovation Investition Italien Kostenreduzierung Kran Langprodukte Legierungen Lieferung Logistik Messung Nachhaltigkeit Produktion Profile Service Spende Stahl Stahlindustrie Technik Umwelt Umweltschutz Unternehmen USA Vertrieb Walzwerk Werkstoff Zusammenarbeit
Mehr erfahren
„Das Max-Planck-Institut ist in die breite Hochschullandschaft in Düsseldorf und der Region eingebettet und ein einzigartiger Ort außeruniversitärer Forschung“, sagt Oberbürgermeister Dr. Stephan Keller (Mitte). Links: Dr. Kai de Weldige, kaufmännischer Geschäftsführer und rechts, Prof. Dierk Raabe, geschäftsführender Direktor des MPI-SusMat.
18.04.2024

Umwidmung des Düsseldorfer Max-Planck-Instituts

Wie können wir Materialien für mehr als 8 Milliarden Menschen produzieren und recyceln und gleichzeitig unseren Planeten schützen? Wie können wir Stahl ohne CO2- Emission...

CO2 Düsseldorf Eisenforschung Emissionen Energie Entwicklung Ergebnis EU Forschung Gesellschaft Industrie ING Klima Max-Planck-Institut Metallindustrie Metallurgie Politik Produktion Stahl Stephan Keller Transformation Umwelt Werkstoff Werkstoffe Wettbewerb Wirtschaft Wirtschaftsstandort
Mehr erfahren