Forschung
Photo: pixabay
02.07.2021

Künstliche Intelligenz analysiert komplexe Materialien

Max-Planck-Forscher präsentieren neues tiefenneuronales Netz zur Vorhersage des mechanischen Verhaltens von Materialien

Die Vorhersage des mechanischen Verhaltens aller Systeme, die uns umgeben, von Fahrzeugen und Raumschiffen bis hin zu Brücken und Wolkenkratzern, ist für Sicherheit und Design unerlässlich. Seit mehr als 300 Jahren wissen Wissenschaftler*innen, wie man die zugrundeliegende Physik in mathematische Formeln übersetzt. Dank des technologischen Fortschritts wurde eine riesige Sammlung von numerischen Werkzeugen und Methoden entwickelt, um die komplexen Gleichungen computergestützt zu lösen und korrekte Antworten zu verschiedenen mechanischen Problemen vorherzusagen. Das direkte Lösen dieser Gleichungen braucht aber Zeit und wird umso schwieriger, je komplexer das System ist. Deswegen sehen sich Forscher oft dazu gezwungen, Näherungen zu verwenden, anstatt alle Variablen des Systems zu berücksichtigen. Jetzt wurde ein großer Schritt in Richtung genauer und schneller Vorhersagen der Mechanik komplexer Materialien gemacht. Wissenschaftler des Max-Planck-Instituts für Eisenforschung (MPIE) und DeepMetis, einem auf künstliche Intelligenz spezialisierten Unternehmen in Berlin, haben tiefe neuronale Netze eingesetzt, um lokale Spannungen in komplexen Materialien zu berechnen - und das bis zu 8300 Mal schneller als ein Standard-Rechensystem, sogenannte Solver, es tun würde. Ihre neuesten Ergebnisse veröffentlichten sie in der Zeitschrift „npj Computational Materials“.

„Unsere Arbeit zeigt, wie all diese Berechnungen durch maschinelles Lernen ersetzt werden können. Anstatt die Gleichungen direkt zu lösen, haben wir ein neuronales Netzwerk entwickelt, das die Physik erlernen und korrekte Antworten auf komplexe und nichtlineare Fragen der Mechanik vorhersagen kann, indem es sich einfach einen großen Datensatz ansieht.“, erklärt Dr. Jaber Rezaei Mianroodi, Leiter der MPIE-Gruppe „Computational Sustainable Metallurgy“ und Erstautor der Veröffentlichung.

Nachdem das neuronale Netz mit vorberechneten korrekten physikalischen Reaktionen trainiert wurde, ist es in der Lage, Lösungen für Probleme und Konfigurationen vorherzusagen, denen es während des Trainings nie begegnet ist. Ähnlich wie ein erfahrener Ingenieur, der ein Gespür für komplexe mechanische Probleme entwickelt und in der Lage ist, innerhalb von Sekunden fundierte Vermutungen anzustellen, lernt das Netzwerk die zugrunde liegende Physik und sagt Lösungen in Mikrosekunden vorher. Die Vorhersagen des Netzwerks sind trotz der Komplexität des Systems um Größenordnungen schneller als herkömmliche Solver. Im Gegensatz zu konventionellen Solvern, die einen iterativen (Versuch und Irrtum) Ansatz zur Lösung nichtlinearer Probleme erfordern, ist der trainierte maschinelle Solver nicht iterativ.

„Diese Methode kann die herkömmlichen Solver ersetzen und verbessert unser Verständnis von Multiskalen- und Multiphysik-Problemen. Unser Solver verbraucht um Größenordnungen weniger Rechenzeit, was neue Möglichkeiten für innovative Materialmodelle eröffnet. Die Einbeziehung unserer maschinellen Lerntechnik wird uns dabei helfen, die Modelle aussagekräftiger und realistischer zu machen, da sie die Optimierung noch komplizierterer Systeme ermöglicht.“, sagt Dr. Nima Siboni, Experte für künstliche Intelligenz bei DeepMetis und Alumni des MPIE.

Die Forscher werden nun die Flexibilität und den Umfang des maschinellen Lernansatzes erweitern, um noch genauere Vorhersagen zu treffen. Außerdem planen sie, weitere wichtige Gleichungen zu untersuchen, die mit herkömmlichen Methoden nur zeitaufwändig zu lösen wären.

Originalpublikation:
J. R. Mianroodi, N. H. Siboni, D. Raabe: Teaching solid mechanics to artificial intelligence – a fast solver for heterogeneous materials. In: npj Compu Mats, 10.1038/s41524-021-00571-z.

Autoren: J. R. Mianroodi, Y. Ahmed Salem

 

Anhand vieler vorberechneter korrekter Antworten lernt das neuronale Netz die versteckten Beziehungen zwischen den eingegebenen Daten und den Ergebnissen der Simulationen. Einmal trainiert, kann das neuronale Netz korrekte Lösungen in unbekannten Simulationskonfigurationen vorhersagen, und das in einem Bruchteil der Zeit, die für herkömmliche Berechnungen benötigt wird. Das ist genau das, was der neue Solver des MPIE macht. - Copyright: J. R. Mianroodi, Max-Planck-Institut für Eisenforschung GmbH
Copyright: J. R. Mianroodi, Max-Planck-Institut für Eisenforschung GmbH

Schlagworte

EisenforschungForschungKünstliche IntelligenzMax-Planck-InstitutMPIeTechnik

Verwandte Artikel

WSM-Branchen liefern Produkte für die Transformation: „Studierende der MINT-Fächer werden in ihrem Arbeitsleben Lösungen für die Klimawende entwickeln“, so Christian Vietmeyer, Hauptgeschäftsführer des WSM
25.07.2024

Die klimaneutrale Zukunft mitgestalten

Die klimaneutrale Zukunft mitgestalten – für die Gen Z ein wichtiges Thema. Wer technische Fächer studiert, hat beste Chancen, bei der Transformation dabei zu sein.

Anlagen Deutschland EU Industrie ING Klima Leichtbau Maschinenbau Metallverarbeitung Politik Stahl Studie Technik Transformation TU Bergakademie Freiberg Umformtechnik Unternehmen Wasserstoff Wettbewerb Wirtschaft Wirtschaftsverband Stahl- und Metallverarbeitung e.V. WSM Zahlen
Mehr erfahren
Dr. Thomas Buer wird zum 1. Oktober 2024 neuer Geschäftsführer von Endress+Hauser Liquid Analysis.
25.07.2024

Wechsel bei Endress+Hauser Liquid Analysis

Dr. Thomas Buer wird zum 1. Oktober 2024 neuer Geschäftsführer von Endress+Hauser Liquid Analysis. Er tritt die Nachfolge von Dr. Manfred Jagiella an.

2016 Auszeichnung Deutschland EU Frankreich IBU ING Innovation Innovationspreis Kanada Maschinenbau Studie Technik Umwelt Umwelttechnologie Unternehmen USA
Mehr erfahren
Luftbild Duisburger Hafen Ruhrort
24.07.2024

Joint Venture nimmt Fahrt auf

Nach Freigabe der Transaktion durch das Bundeskartellamt nimmt das Logistik-Joint Venture zwischen der thyssenkrupp Steel Logistics GmbH und der Duisburger Hafen AG (duis...

Anpassung Bund Bundeskartellamt Digitalisierung Duisburg Duisport EU IBU IMU ING Investition Klima Koks Kran Logistik Partnerschaft Produktion Reparatur Rohstoffe Schulung Sinter Software Stahl Stahlproduktion Steuerung Technik Thyssen thyssenkrupp Thyssenkrupp Steel Europe Thyssenkrupp Steel Europe AG Transformation Umschlag Unternehmen USA Wirtschaft Wirtschaftsstandort
Mehr erfahren
(v.l.) Christoph J. Brandenburg, Fernando Pedicillo und Fabio Graw unterzeichnen die Vereinbarung zwischen Craemer und Arvedi für die Lieferung von nachhaltigem Stahl aus Italien.
17.07.2024

Craemer kooperiert mit Acciaieria Arvedi

Die Craemer Gruppe und der Stahlhersteller Acciaieria Arvedi haben kürzlich eine Kooperation unterzeichnet. Bei Craemer werden nun Stahlkomponenten mit zertifiziertem koh...

Arvedi Automobil Automotive Brandenburg CO2 Coils Dekarbonisierung Deutschland Edelstahl Emissionen Energie Entwicklung EU Forschung Gesellschaft Industrie ING Italien Kaltband Klima Kooperation Lieferung Metallumformung Metallverarbeitung Nachhaltigkeit Produktion Rohre Schrott Stahl Stahlcoil Stahlproduktion Stahlunternehmen Strategie Umformung Umwelt Umweltschutz Unternehmen USA Vereinbarung Walzwerk Zusammenarbeit
Mehr erfahren
Der ArcelorMittal Standort Bremen aus der Luft
16.07.2024

Emissionen von Stahlwerken per Satellit messbar

Forschende des Instituts für Umweltphysik (IUP) der Universität Bremen haben ein Verfahren entwickelt, mit dem sich die Treibhausgas-Emissionen einzelner Stahlwerke gezie...

BMBF Bremen Bund CO2 Deutschland Donawitz Duisburg Entwicklung Ergebnis Essen EU Fachzeitschriften Forschung ING Max-Planck-Institut Messe Messung Politik Produktion Produktionsprozess Roheisen Salzgitter Sensoren Stahl Stahlerzeugung Stahlwerk Umwelt Universität USA Wasserstoff Wirtschaft
Mehr erfahren