Forschung
Photo: pixabay
25.01.2023

Neue hierarchische Designstrategie für ‚schlanken‘ Stahl

Fahrzeuge, Gebäude, Infrastrukturen - alles unvorstellbar ohne Stähle. Allerdings muss der eingesetzte Stahl je nach Anwendung ganz unterschiedliche Eigenschaften erfüllen. Deshalb sind ca. 2500 Stahlsorten auf dem Markt und es werden stetig neue entwickelt oder vorhandene Stahlsorten optimiert. Materialwissenschaftlerinnen und -wissenschaftler beschäftigen sich gegenwärtig vor allem mit drei Eigenschaften: Nachhaltigkeit, Festigkeit und Verformbarkeit. Gleichzeitig müssen sie die Kosten der Herstellung und die industrielle Anwendbarkeit der entwickelten Stähle berücksichtigen und von kritischen Legierungselementen Abstand nehmen, also chemisch ‚schlanke‘ Legierungen entwickeln, die mit preiswerten und nachhaltigeren Elementen auskommen. Ein Forschungsteam, hauptsächlich von der chinesischen Northeastern University und dem Düsseldorfer Max-Planck-Institut für Eisenforschung (MPIE), hat nun eine neue Designstrategie für sogenannte Mittel-Mangan-Stähle entwickelt, die diese Eigenschaften optimiert. Das Team veröffentlichte die aktuellen Ergebnisse in der renommierten Fachzeitschrift ‚Science‘.

„Ultrahochfeste Stähle werden zum Beispiel bei sicherheitsrelevanten Bauteilen in Kraftwerken, Flugzeugen, Industrieanlagen oder auch in der Autokarosserie verwendet. Dort müssen die Stähle fest sein, aber gleichzeitig auch eine hohe Energie im Falle einer Verformung aufnehmen können. Je mehr Energie aufgenommen wird, desto mehr wird der Aufprall abgeschwächt und die Insassen bleiben geschützt“, erklärt Professor Dierk Raabe, Direktor am MPIE und korrespondierender Autor der Veröffentlichung.

Festigkeit und Duktilität, die die Energieaufnahmekapazität beeinflusst, lassen sich allerdings nur bedingt vereinen. Martensitaushärtende Stähle erreichen eine Festigkeit von 2 Gigapascal (GPa). Sie sind jedoch relativ spröde und verwenden teure und nur begrenzt verfügbare, wenig nachhaltige Legierungselemente wie Kobalt, Nickel, Molybdän oder Titan. Im Vergleich zu martensitaushärtenden Stählen erreichen verformte und partitionierte Stähle, sogenannte DP-Stähle, eine ähnliche Festigkeit, können aber um mehr als 15% gedehnt werden. Allerdings ist ihre Verarbeitung kompliziert und damit kostspielig, und ihre Verformung ist unregelmäßig. Alle verwendeten ultrahochfesten Stähle haben eine Gemeinsamkeit: ihr Martensitgefüge folgt keinen topologischen Gestaltungs- oder Formkriterien. Das Gefüge erhöht zwar die Festigkeit, verringert aber aufgrund der fehlenden Struktur die Duktilität des Materials.

„Unsere Designstrategie beschäftigt sich mit genau dieser Schwachstelle: der Struktur des Martensits. Durch mehrmaliges Schmieden, einer Behandlung unter kryogenen Bedingungen und Vergütung konnten wir zahlreiche Mikromechanismen aktivieren, die das Material stärken und duktiler machen. Unser neuer Stahl erreicht eine Zugfestigkeit von 2,2 GPa und lässt sich dennoch um 20% dehnen“, erklärt Raabe.

Durch dieses Vorgehen wird der größte Teil des Austenits in Martensit umgewandelt und der Martensit ist lamellenartig angeordnet und zweifach topologisch ausgerichtet.

„Das lamellenartige Gefüge erinnert an einen typischen Damaszenerstahl, der durch Faltung und Kombination verschiedener Eisenlegierungen an Festigkeit gewinnt. Hier beschränken wir uns auf eine Legierung, aber nutzen eine ähnliche hierarchische Gefügeordnung“, sagt Raabe.

Die Wissenschaftlerinnen und Wissenschaftler setzten Transmissions- und Rasterelektronenmikroskopie sowie Atomsondentomographie ein, um das Material bis auf die atomare Ebene zu charakterisieren und den Einfluss der einzelnen Verarbeitungsschritte zu erkennen. Das Schmieden führt beispielsweise zu einer höheren Versetzungsdichte und zu stärker verteilten Nanoausscheidungen, was zu einer höheren Dehnbarkeit führt. Die hohe Duktilität ist eine Folge der Versetzungen im Martensit und der allmählichen, durch Verformung angeregten Phasenumwandlung.

Die entwickelte Designstrategie ist mit den bestehenden industriellen Verfahren kompatibel und lässt sich daher einfach und effizient hochskalieren. Das Forschungsteam wird die Legierungszusammensetzung und die Verarbeitungsroute
jetzt für andere martensitische Legierungsklassen anpassen, um auch für diese hohe Festigkeit und Duktilität zu kombinieren.

(Quelle: Y. Li, G. Yuan, L. Li, J. Kang, F. Yan, P. Du, D. Raabe, G. Wang: Ductile 2-GPa steels with
hierarchical substructure. In: Science: DOI: 10.1126/science.add7857)

Zugfestigkeit der beiden Stähle mit strukturiertem Martensit (Schmiedelegierungen A und B) im Vergleich zu anderen ultrahochfesten Stählen. - Photo: Science, Volume 379, Issue 6628
Photo: Science, Volume 379, Issue 6628

Schlagworte

AnlagenEisenforschungEnergieErgebnisEUForschungIndustrieINGLegierungenMax-Planck-InstitutMPIeNachhaltigkeitSchmiedenStahlStrategieUSA

Verwandte Artikel

Thomas Peinkofer, Geschäftsführer AICHELIN Service GmbH und Marco Greifeneder, Head of Operations AICHELIN Service GmbH
24.04.2024

Aichelin für Umweltmanagementsystem zertifiziert

Die AICHELIN Service GmbH mit Sitz in Ludwigsburg hat im Frühjahr 2024 erfolgreich die Zertifizierung nach dem weltweit anerkannten Standard ISO 14001:2015 für ihr umfass...

Aichelin Entwicklung EU Handel ING Logistik Managementsystem Nachhaltigkeit Optimierung Service Umwelt Umweltschutz Unternehmen
Mehr erfahren
Salzgitter Flachstahl hat in eine Modernisierung der Automatisierung von Primetals Technologies für einen Teil der Warmwalzlinie investiert.
24.04.2024

Brammenstauchpresse bei Salzgitter Flachstahl modernisiert

Die Salzgitter Flachstahl hat Primetals Technologies mit einer Modernisierung der Leistungselektronik für die Brammenstauchpresse im Warmwalzwerk Salzgitter beauftragt.

Antrieb Automatisierung Blech Bramme Direktumrichter Essen EU Flachstahl Gesellschaft Inbetriebnahme Konverter Optimierung Presse Pressen Primetals Produktion Salzgitter Salzgitter Flachstahl Schmelze Schmelzen Stahl Technik Umrichter Unternehmen USA Walzwerk Warmband
Mehr erfahren
(v.l.n.r.) Sandrina Sieverdingbeck, Geschäftsführerin DEUMU (Deutsche Erz- und Metall-Union GmbH); Holger Kreetz, Uniper SE COO; Gunnar Groebler, Salzgitter AG CEO; Christian Stuckmann, Uniper SE VP Business Development Hydrogen
23.04.2024

Salzgitter AG und Uniper kooperieren bei grünem Wasserstoff

Die Salzgitter AG und die Uniper SE haben einen Vorvertrag über die Lieferung und Abnahme von grünem Wasserstoff unterzeichnet. Dieser soll in der von Uniper geplanten Gr...

CO2 Dekarbonisierung Deutschland Direktreduktion Elektrolyse Emissionen Energie Erdgas EU Hochofen Inbetriebnahme Industrie ING KI Klima Klimaziel Klimaziele Kooperation Lieferung Offshore Partnerschaft Produktion Produktionsprozess Reduktionsmittel Stahl Stahlindustrie Stahlproduktion Strategie Transformation Uniper Unternehmen Vereinbarung Wasserstoff Wilhelmshaven Windpark
Mehr erfahren
Bundeskanzler Olaf Scholz, Ministerpräsident von Norwegen Jonas Gahr Støre und CEO der Salzgitter AG Gunnar Groebler bei der Eröffnung des HMI
23.04.2024

Salzgitter AG launcht Grünstahlmarke SALCOS

Die Salzgitter AG möchte mit der Einführung seiner Grünstahlmarke SALCOS® seine Kunden dabei unterstützen ihre Wertschöpfungsketten nachhaltig und transparent zu dekarbon...

Automobil Bauwesen CO2 CO2-Emissionen Dekarbonisierung Direktreduktion Elektrolichtbogenofen Emissionen Energie Energiewirtschaft EU Gesellschaft Industrie ING Klima Lichtbogenofen Messe Nachhaltigkeit Schrott Stahl Transformation Umwelt Unternehmen Wirtschaft WV WV Stahl Zertifikat
Mehr erfahren
Schrottverarbeitung bei BSW
23.04.2024

BDSV fordert Berücksichtigung bei neuem Klimaschutzgesetz

Der Bundesverband der Deutschen Stahlrecycling- und Entsorgungsunternehmen äußert Bedenken gegenüber dem vorgeschlagenen Klimaschutzgesetz und fordert spezifische Anpassu...

ABB Anpassung Bund CO2 DSV Emissionen Entwicklung EU ING KI Klima Klimapolitik Klimaschutz Klimaziel Klimaziele Kreislaufwirtschaft Politik Recycling Stahl Unternehmen Wirtschaft
Mehr erfahren