Forschung
Bei der Reduktion von Eisenoxid zu Eisen wird Energie gespeichert. Bei der Rückverbrennung von Eisen zu Eisenoxid wird Energie freigesetzt. Die Optimierung dieses Prozesses könnte zu einer vollständig zirkulären und damit nachhaltigen Energiespeicherung führen. - Abb.: Laurine Choisez, Max-Planck-Institut für Eisenforschung GmbH
08.10.2022

Metallpulver: umweltfreundlicher Brennstoff der Zukunft?

Nachhaltige Energie kann aus Wind, Sonne und Wasser gewonnen werden. Solche erneuerbaren Energiequellen sind jedoch wetterabhängig: In Spitzenzeiten von Wind und Sonne wird überschüssige Energie erzeugt, die in Zeiten mit weniger Wind und Sonnenschein benötigt wird. Doch wie lässt sich diese überschüssige Energie effizient speichern und transportieren?

Bislang gab es keine zuverlässige, sichere und kostengünstige Möglichkeit, eine große Menge Energie möglichst kompakt zu speichern. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Eisenforschung (MPIE) und der Technischen Universität Eindhoven haben nun untersucht, wie Metalle, insbesondere Eisen, zur Energiespeicherung verwendet
werden können und welche Parameter die Effizienz der Speicherung und Wiederverwendung bestimmen. Ihre jüngsten Ergebnisse haben sie in der Zeitschrift Acta Materialia veröffentlicht.

„Energie in Metallen zu speichern und diese zu verbrennen um die gespeicherte Energie wieder freizusetzen, ist eine Methode, die bereits in der Luft- und Raumfahrttechnik angewendet wird. Unser Ziel war es zu verstehen, was genau bei der Speicherung und Verbrennung von Eisen auf der Mikro- und Nanoskala passiert und wie die Veränderung der Mikrostruktur die Effizienz des Prozesses beeinflusst. Außerdem wollten wir herausfinden, wie man diesen Prozess ohne Energie- oder Materialverluste, also vollständig zirkulär, aufbauen kann“, erklärt Dr. Laurine Choisez, die kürzlich ihre Postdoc-Forschung am MPIE abgeschlossen hat und Erstautorin der
Veröffentlichung ist.

Wenn Eisenerze zu Eisen reduziert werden, ist im reduzierten Eisen viel Energie gespeichert. Die Idee ist, diese Energie bei Bedarf aus dem Eisen herauszuholen, indem das Eisen wieder zu Eisenoxid oxidiert wird. Diese Oxidation wird auch als „Verbrennung“ bezeichnet. In Zeiten von überschüssiger Energie aus Wind, Sonne oder Wasser könnte dieses Eisenoxid wieder zu Eisen reduziert und die Energie dadurch gespeichert werden.

Choisez und ihr Team am MPIE konzentrierten sich auf die Analyse der Eisenpulver nach der Reduktion und Verbrennung, wobei sie High-Tech Mikroskopie- und Simulationsmethoden einsetzten, um die Reinheit des Pulvers, die Morphologie, die Porosität und die Thermodynamik des Verbrennungsprozesses zu analysieren. Die Mikrostruktur des verbrannten Eisenpulvers ist entscheidend für die Effizienz des nachfolgenden Reduktionsprozesses und um festzustellen, ob der Reduktions- und Verbrennungsprozess vollständig zirkulär ist, das heißt, dass keine zusätzliche Energie oder kein zusätzliches Pulver zugeführt werden muss.

Die Wissenschaftlerinnen und Wissenschaftler stellen zwei Verbrennungswege vor:
einen, der von einer Propan-Zündflamme unterstützt wird, und einen autarken, bei dem nur das Eisenpulver als Brennstoff verwendet wird. Sie zeigen wie der Verbrennungsweg die Mikrostruktur des verbrannten Eisens beeinflusst.

„Wir sind derzeit dabei, die Reduktions- und Verbrennungsschritte auf ein industriell relevantes Niveau hoch zu skalieren und die genauen Parameter wie Temperatur und
Partikelgröße zu bestimmen, die benötigt werden“, erklärt Niek E. van Rooij, Doktorand in der Gruppe „Verbrennungstechnologie“ der Technischen Universität Eindhoven und
Mitautor der Veröffentlichung.

Die jüngste Studie hat gezeigt, dass die Verwendung von Metallen zur Energiespeicherung machbar ist. Künftige Studien werden nun untersuchen, wie die Zirkularität des Prozesses erhöht werden kann. Momentan verringert der Verbrennungsprozess die Größe einiger verbrannter Partikel. Gründe hierfür sind partielle Eisenverdampfung, Mikroexplosionen und/oder der Bruch einiger Eisenoxidpartikel:

(Quelle: Max-Planck-Institut für Eisenforschung GmbH)

Original-Veröffentlichung:
L. Choisez, N. E. van Rooij, C. J.M. Hessels, A. K. da Silva, I. R. Souza Filho, Y. Ma, P. de Goey, H. Springer, D. Raabe: Phase transformations and microstructure evolution during combustion of iron powder. In: Acta Materialia 239 (2022) 118261.

Photo: Laurine Choisez, Max-Planck-Institut für Eisenforschung GmbH
Verbrennung von Eisenpulver in einem Brenner im Industriemaßstab. Das Pulver wird als nachhaltiger Energieträger verwendet Photo: Laurine Choisez, Max-Planck-Institut für Eisenforschung GmbH

Schlagworte

EisenerzeEisenforschungEnergieErgebnisEUForschungIlvaIMUIndustrieINGMax-Planck-InstitutMPIePulverStudieTechnikTemperaturTransformationTransportUmwelt

Verwandte Artikel

17.02.2026

Stahl Krebs wird Vertriebspartner von Alleima

Der Solinger Stahlhändler nimmt die Premium-Messerstähle des schwedischen Herstellers in sein Sortiment auf

Deutschland Distribution Edelstahl EU IBU Industrie ING Legierungen Lieferung Logistik Messe Nachhaltigkeit Partnerschaft Produktion Schmieden Service Spezialstahl Stahl Stahlherstellung Stahlproduktion Unternehmen USA Vertrieb Zertifikat Zusammenarbeit
Mehr erfahren
17.02.2026

Klöckner & Co SE empfiehlt Annahme des Übernahmeangebotes von Worthington Steel

Der Vorstand und der Aufsichtsrat der Klöckner & Co SE haben am 13. Februar 2026  ihre gemeinsame begründete Stellungnahme zum freiwilligen öffentlichen Übernahmeangebot...

Anlagen Aufsichtsrat Entwicklung Essen EU Finanzierung Gesellschaft Goldman Sachs HZ Inc. ING Kartellrecht Messe Nordamerika Partnerschaft Presse Refinanzierung Service Strategie Swoctem Übernahme Unternehmen USA Vereinbarung Verkauf Vorstand Wirtschaft
Mehr erfahren
Brammen im Werk in Tornio
16.02.2026

Outokumpu: Geschäftsbereich Europa schwächelt

Für Outokumpu endete das Geschäftsjahr schwach, geprägt von Gegenwind im Geschäftsbereich Europa. Das bereinigte EBITDA im Zeitraum Januar–Dezember 2025 betrug 167 Mio. €...

ABB Beizlinie Chrom Dekarbonisierung Deutschland Edelstahl Einsparung Ergebnis EU Finnland Geschäftsjahr Handel IBU ING Investition Krefeld Kreislaufwirtschaft Legierungen Lieferung Machbarkeitsstudie Nachhaltigkeit Optimierung Produktion Restrukturierung Rohstoffe Schweden Stahl Stahlwerk Strategie Studie Unternehmen USA Verkauf Werkstoff Werkstoffe Wettbewerb Wirtschaft Zahlen
Mehr erfahren
Steven Endress (links) wird neuer Präsident des Endress+Hauser Verwaltungsrats und folgt damit auf Matthias Altendorf (rechts). Sandra Genge (Zweite von links) ist zur stellvertretenden Vorsitzenden des Familienrats ernannt worden. Sie soll die Nachfolge von Dr. h. c. Klaus Endress (Zweiter von rechts) antreten, der angekündigt hat, 2027 als Vorsitzender zurückzutreten.
13.02.2026

Wechsel im Endress+Hauser Verwaltungsrat

Der Generationswechsel in der Endress+Hauser Gruppe setzt sich fort. Nun wird es auch an der Spitze des Verwaltungsrats zu einem Wechsel kommen.

Ausbildung Automatisierung Bund Entwicklung Essen EU Generalversammlung Gesellschaft HZ Industrie ING Karriere Schweiz Software Technik Unternehmen USA Verwaltungsrat Weiterbildung Wirtschaft Zusammenarbeit
Mehr erfahren
Dr. Christian Morawetz, Chief Operating Officer (COO) bei der RATH AG
13.02.2026

Veränderung im Vorstand der Rath AG

Zum 1. Januar 2026 hat Dr. Christian Morawetz (45) die Position des Chief Operating Officer (COO) übernommen.

Aufsichtsrat Automation Dekarbonisierung Energie Energieeffizienz Entwicklung EU Feuerfest Forschung Fraunhofer Industrie ING Innovation Marktbedingungen Produktion Rath AG Schienen Stahl Stahlindustrie Temperatur Transformation Unternehmen Vorstand Wettbewerb Wirtschaft
Mehr erfahren