Forschung
Ubaid Manzoor, Doktorand am MPI-SusMat und Erstautor der Nature-Publikation, beim Lichtbogenofen mit dem er minderwertige Nickelerze mittels Wasserstoffplasma reduziert - Photo: Max-Planck-Institut für Nachhaltige Materialien GmbH
02.05.2025

Grünes Nickel für die globale Elektrifizierung

Wissenschaftler am Max-Planck-Institut für Nachhaltige Materialien haben ein CO2- freies und energiesparendes Verfahren entwickelt, um Nickel für Batterien, Magnete und Edelstahl zu gewinnen. Ihre aktuellen Ergebnisse wurden in der Fachzeitschrift Nature veröffentlicht.

Auf den Punkt gebracht

- Global rasant wachsende Nickelnachfrage: Der Bedarf an Nickel wird sich bis 2040 voraussichtlich verdoppeln. Gleichzeitig werden bei der konventionellen  Herstellung von einer Tonne Nickel, rund 20 Tonnen CO2 emittiert.
 
- Nachhaltiges Verfahren: Wissenschaftler stellen Nickel aus minderwertigen Erzen mit Hilfe von Wasserstoffplasma her – CO2-frei, energieeffizient und in nur einem  einzigen Prozessschritt.

- Industrielle Skalierung möglich: Für die industrielle Anwendung müssen bewährte Verfahren wie Lichtbögen mit hohen Strömen, elektromagnetische Rührsystem oder Gasimpulse eingesetzt werden, um eine kontinuierliche Reaktion zu gewährleisten.
 

Der Umstieg von fossilen auf elektrische Energieträger ist ein zentraler Baustein, um CO2-Emissionen zu senken und damit den Klimawandel einzudämmen. Für die Elektrifizierung gerade im Transportsektor und der Industrie ist Nickel unverzichtbar. Nickel wird sowohl für Batterien, Magnete und für Edelstahl benötigt. Prognosen
zufolge wird sich der Nickelbedarf bis 2040 voraussichtlich verdoppeln. Doch die konventionelle Nickelproduktion verursacht aktuell rund 20 Tonnen CO2 pro Tonne Nickel – eine erhebliche Umweltbelastung. Wissenschaftler am Düsseldorfer Max- Planck-Institut für Nachhaltige Materialien (MPI-SusMat) ist nun ein Durchbruch gelungen. Sie haben ein CO2-freies, energieeffizientes Verfahren zur Nickelgewinnung entwickelt, das auch die Nutzung bislang vernachlässigter, minderwertiger Erze ermöglicht. Sie veröffentlichten ihre Ergebnisse in der Fachzeitschrift Nature.

In einem einzigen Schritt zu grünem Nickel

„Wenn wir Nickel weiterhin konventionell produzieren und für die Elektrifizierung nutzen, verlagern wir die Umweltbelastung lediglich vom Verkehrs- in den Metallurgiesektor“, erklärt Ubaid Manzoor, Doktorand am MPI-SusMat und Erstautor der Publikation.

Zusammen mit seinen Kollegen entwickelte er ein Verfahren, bei dem Nickel aus Erzen in nur einem einzigen Schritt mit Wasserstoffplasma gewonnen wird – ganz ohne Kohlenstoff. Rechnet man die CO2-Emissionen ein, die beim Abbau der Nickelerze und deren Transport entstehen, so lassen sich die CO2-Emissionen mit dem neuen Prozess um 84% senken. Zudem ist der Prozess bei Einsatz erneuerbarer Energiequellen bis zu 18% energieeffizienter, da das mehrmalige Erhitzen und Abkühlen der Erze wie bei konventionellen Verfahren üblich, vermieden wird.

Bisher setzt die Industrie überwiegend auf hochwertige Erze, da die Gewinnung von Nickel aus minderwertigen Erzen technisch deutlich anspruchsvoller ist. Nickel kommt in komplexen Silikaten oder Eisenoxiden vor. Herkömmliche Verfahren benötigen deshalb mehrere energieintensive Schritte: Kalzinierung, Schmelzen, Reduktion und Raffinierung. Die Max-Planck-Wissenschaftler können mit ihrem neuen Verfahren auch minderwertige Erze – die rund 60% der weltweiten Nickelvorkommen ausmachen – in einem einzigen Lichtbogenofen zu einem hochwertigen Nickelprodukt, sogenannter Ferronickel, verarbeiten.

„Mit Hilfe von Wasserstoffplasma und indem wir die Thermodynamik innerhalb des Lichtbogenofens kontrollieren, gelingt es uns, die komplexe Kristallstruktur der Minerale in einfachere Ionenformen zu überführen – und das sogar ohne Katalysatoren“, erklärt Professor Isnaldi Souza Filho, Gruppenleiter am MPI-SusMat
und korrespondierender Autor der Studie.

Von der Forschung zur Anwendung

Das Verfahren reduziert nicht nur Emissionen und Energieverbrauch, sondern erweitert auch die Bandbreite nutzbarer Nickelerze – ein Gewinn für Wirtschaft und Umwelt. Der nächste Schritt ist die Skalierung des Prozesses für die industrielle Anwendung.

„Die Reduktion der Erze erfolgt ausschließlich an der Reaktionsoberfläche – nicht im gesamten Schmelzbad. Für eine Umsetzung im industriellen Maßstab ist es daher entscheidend, dass die nicht-reduzierte Schmelze kontinuierlich zur Reaktionsoberfläche gelangt“, erklärt Manzoor.

„Dies lässt sich durch Lichtbögen mit hohen Strömen, elektromagnetischen Rührsystemen und Gasimpulsen realisieren.“

Diese Methoden sind in der Industrie bereits etabliert, was die Integration in bestehende Produktionsanlagen erleichtert.

Das neue Verfahren für die Herstellung von grünem Nickel schafft die Grundlage für eine umweltfreundlichere Elektrifizierung des Verkehrssektors. Das gewonnene Ferronickel kann direkt in der Edelstahlproduktion verwendet oder – nach weiterer Aufbereitung – für Batteriematerialien und Hochleistungsmagnete genutzt werden. Auch die beim Reduktionsprozess entstehende Schlacke kann weiterverwendet werden, etwa für Zement oder Ziegel in der Bauindustrie. Das Verfahren ist zudem auf andere Metalle wie Kobalt übertragbar, das ebenfalls für Elektromobilität und Energiespeicherung eine zentrale Rolle spielt.

Die Forschung wurde durch einen ERC Advanced Grant des Europäischen Forschungsrats finanziert.

Original-Veröffentlichung
U. Manzoor, L. Mujica Roncery, D. Raabe, I.R. Souza Filho: Sustainable nickel enabled by hydrogen-based reduction.
In: Nature (2025), DOI: 10.1038/s41586-025-08901-7

(Quelle: Max-Planck-Institut für Nachhaltige Materialien GmbH)

Abb.: Max-Planck-Institut für Nachhaltige Materialien GmbH
Vergleich der herkömmlichen Nickelproduktion und des neu entwickelten umweltfreundlichen Nickelverfahrens. Während die herkömmliche Produktion mehrere Stufen von der Erzaufbereitung bis zum Trocknen umfasst, basiert das neu entwickelte Verfahren ausschließlich auf den Reaktionen, die während der Wasserstoff-Plasma-Schmelzreduktion (HPSR) stattfinden. Rechts ist die reduzierte Nickel-Eisen-Legierung (silberne Kugel) nach 4 Minuten Wasserstoff-Plasma-Reduktion zu sehen. Abb.: Max-Planck-Institut für Nachhaltige Materialien GmbH

Schlagworte

ABBAnlagenBauindustrieCO2CO2-EmissionenEdelstahlElektrifizierungEmissionenEnergieErgebnisEUForschungHZIndustrieINGKlimaLEDLichtbogenofenMax-Planck-InstitutMetallurgieProduktionSchlackeSchmelzeSchmelzenStahlStahlproduktionStudieTransportUmweltUSAVerlagWasserstoffWirtschaft

Verwandte Artikel

Haspelbereich des Warmbandwerks 1
17.12.2025

Modernisierung im Warmbandwerk 1 von thyssenkrupp Steel abgeschlossen

Ein Lifecycle-Service-Ansatz stellt künftig kontinuierlichen Anlagenbetrieb und hohe Verfügbarkeit sicher

Anlagen Automation Automatisierung EU Flachstahl Haspel Haspelanlage Messung Partnerschaft Produktion Service SMS SMS group Stahl Steuerung thyssenkrupp Thyssenkrupp Steel Europe Walzwerk Warmband
Mehr erfahren
Dr.-Ing. Marco Richrath
16.12.2025

Marco Richrath wird Produktionsvorstand bei thyssenkrupp Steel

Er übernimmt die operative und technologische Steuerung der gesamten Produktion der Stahlsparte des Konzerns

Aufsichtsrat Deutschland Entwicklung Industrie Innovation Karriere Produktion Stahl Steuerung thyssenkrupp Thyssenkrupp Steel Europe Thyssenkrupp Steel Europe AG Thyssenkrupp Uhde Transformation Transformationsprozess Unternehmen USA Vertrieb Vorstand Zusammenarbeit
Mehr erfahren
Jonathan Weber wird neuer Finanzvorstand von Dillinger und Saarstahl
16.12.2025

Wechsel im Vorstand von Dillinger und Saarstahl

Anlagen Digitalisierung Dillinger Entwicklung Finanzierung Gesellschaft Getriebe Grobblech Industrie Produktion Saarstahl SHS Stahl Stahlindustrie Technik Transformation Transformationsprozess Unternehmen Vertrieb Vorstand
Mehr erfahren
Korbinian Ott
16.12.2025

Ott komplettiert Doppelspitze bei Steelwind Nordenham

Korbinian Ott übernimmt die kaufmännische Geschäftsführung und führt künftig Steelwind Nordenham gemeinsam mit Dr. Andreas Liessem

Aufsichtsrat Blech Digitalisierung Dillinger Energie Energiewende Entwicklung Geschäftsführung Grobblech ING Offshore Projektmanagement SHS Stahl Steelwind Nordenham Unternehmen Vorstand Wettbewerb Windpark
Mehr erfahren
Erste Schmelze der 350-Tonnen-RH-Anlage, ausgerüstet mit Pfannenhubsystem und Fast Vessel Exchange, in Steel Plant 4 bei JSW Vijayanagar Works in Toranagallu, Indien
15.12.2025

RH-Anlage mit Pfannenhub- und -schnellwechsel-Kombination

JSW Vijayanagar Metallics Ltd. (JVML), Teil der JSW Steel Ltd., einem der führenden Stahlhersteller in Indien, hat in Toranagallu (Vijayanagar Works, Stahlwerk 4) eine 35...

Anlagen Automobil Betriebssicherheit Energie EU HZ Inbetriebnahme Indien Industrie ING JSW Steel Ltd. KI Lieferung Ltd Ltd. Metallurgie Partnerschaft Produktion RH-Anlage SMS SMS group Stahl Stahlmarkt Stahlwerk USA Vakuumbehandlung Zusammenarbeit
Mehr erfahren